Le moteur animal

Trois facteurs permettent de mesurer l'efficacité de la traction animale :

- 1- vitesse de déplacement
- 2- effort à l'épaule
- 3- débit kilogramétrique (puissance)
- 1- La vitesse est fonction de la morphologie et notamment de la hauteur au garrot

	Distance en m/s	Vitesse en km/h si H = 1.60 m	En labour classique : 4km/h Déplacement moyen : 6km/h
Pas de travail	3% H	4,3	Trot moyen : 9 km/h
Pas libre	1 H	5,8	
Petit trot	3/2 H	8,6	Certains chevaux marchant à 2.5 km/h
Grand trot	2 H	12	sont recherchés pour les travaux de
Gallop	9/2 H	26	précision comme le binage.

2- l'effort à l'épaule est fonction de la morphologie, il est proportionnel au rapport C² / H

- C = tour droit de poitrine en m
- H = taille au garrot en m

(Les chevaux médiolignes et brévilignes privilégient la force et les longilignes la vitesse).

	Effort en kg
Pas de travail	60 C ² /H
Pas libre	30 C2/H
Petit trot	15 C ² /H
Grand trot	11 C ² /H
Gallop	7 C ² /H

L'effort de freinage, que le cheval doit développer dans certains cas, provoque une dépense d'énergie plus grande que celle de l'effort égal de traction. Des freins efficaces sont donc nécessaires.

3- La puissance du cheval dépend uniquement de sa capacité respiratoire. Ce débit est le produit de l'effort à l'épaule en kg par la vitesse en m/s

pas libre 30 C2/H. 3/4 H = 22,5 C2

petit trot 15 C2/H . 3/2 H= 22,5 C2

>Ce débit ne dépend pas de la hauteur au garrot

>Il est constant selon l'allure

>II est proportionnel au périmètre droit thoracique

> On retient 22,11 comme coefficient de proportionnalité

soit pour un cheval d'une tonne C = 2,32 m H = 2,03 m

22,11 . 2,32 . 2,32 = 120 kg m/s

soit pour un cheval de 500 kg C = 1,85 m H = 1,60 m

22,11.1,85.1,85 = 76 kg m/s Ainsi 2 chevaux de 500 kg soit 1 T sont plus avantageux qu'un cheval d'une tonne puisqu'ils peuvent fournir à la seconde 32 Kg/m de mieux.

Monate	Vitesse km/h	Effort à l'épaule en Kg m/s
Pas de travail	4,3	127
Pas libre	5,8	63
Petit trot	8,6	31,5
Grand trot	12	23,3
Gallop	26	15

Capacités d'un cheval de 500 kg à 1,60 m au garrot et 1,85 m de tour droit de poitrine

 $C^2/H = 2,13$ soit un cheval qui allie une rapidité moyenne et une force moyenne. Sa puissance est : 22,11 $C^2 = 75,5$ kg m/s.

Calculons la charge que peut tirer ce cheval avec un sol et un véhicule qui opposent au roulement* 18 kg/T au pas libre et 27 Kg/T au petit trot ; soit un véhicule à pneus sur un chemin rural.

à 5,8 km/h ce cheval peut tirer 63/18 = 3,5 T

à 8,6 km/h ce cheval peut tirer 31,5/27 = 1,2 T

* On appelle coefficient de roulement l'effort en kg nécessaire pour déplacer une masse de 1 T.

Rapporté à la tonne, l'effort de roulement est inversement proportionnel au diamètre des roues et à la largeur du bandage.

Plus le sol de roulement est solide, moins la largeur de bandage à d'influence. Le véhicule agraire se déplace le plus souvent sur un sol élastique et mou. La surface portante possède donc une grande importance. Par contre, l'effort de traction croit avec la vitesse de déplacement.

Au pas

Un cheval correctement nourri peut travailler journellement 9h à 4,3 km/h, 6 jours sur 7 Ex : 3h de travail, suivi d'1/2h de repos, casse croûte pour tout le monde

Puis 2h de travail suivi de 1h 1/2 de repos, déjeuner

Puis 2h de travail suivi d'1/2h de repos

Puis 2h de travail.

Soit 9h de travail et 2h30 de repos

Au trot

Un cheval peut travailler journellement 4h30 à 8,6 km/h, 6 jours sur 7 Ex : 2h30 le matin et 2 h l'après midi

Si la vitesse augmente, l'effort à l'épaule diminue et la résistance au roulement augmente c'est pourquoi le même cheval tire 3500 kg à 5,8 km/h et 1500 kg à 8,6 km/h (soit 3 x +)

-(1 kg sur le dos du cheval équivaut à 20 kg remorqués)

In : Hippobulle nº5/6. 7/8 et 9/10 étude scientifique (1958) sur l'Emploi rationnel du cheval de trait.

Frictional force can be expressed as

 $F_f = \mu N$ (1) where $F_f = frictional force (N, Ib)$ μ = static (μ_s) or kinetic (μ_k) frictional coefficient N = normal force (N, lb)

For an object pulled or pushed horizontally, the normal force - *N* - is simply the weight: N = m g(2)

m = mass of the object (kg, slugs) g = acceleration of gravity (9.81 m/s², 32 ft/s²)Frictional Coefficients for some Common Materials and Materials Combinations

Materials and Material Combinations		Static Frictional Coefficient - μ_s		
		Clean and Dry Surfaces	Lubricated and Greasy Surfaces	
Aluminum	Aluminum	1.05 - 1.35	0.3	
Aluminum-bronze	Steel	0.45		
Aluminum	Mild Steel	0.61		
Brake material ²⁾	Cast iron	0.4		
Brake material ²⁾	Cast iron (wet)	0.2		
Brass	Steel	0.35	0.19	
Brass	Cast Iron	0.3 ¹⁾		
Brick	Wood	0.6		
Bronze	Steel		0.16	
Bronze	Cast Iron	0.22 ¹⁾		
Bronze - sintered	Steel		0.13	
Cadmium	Cadmium	0.5	0.05	
Cadmium	Chromium	0.41	0.34	
Cadmium	Mild Steel	0.46 ¹⁾		
Cast Iron	Cast Iron	1.1, 0.15 ¹⁾	0.07 ¹⁾	
Cast Iron	Oak	0.49 ¹⁾	0.075 ¹	
Cast iron	Mild Steel	0.4, 0.23 ¹⁾	0.21, 0.133 ¹⁾	
Car tire	Asphalt	0.72		
Car tire	Grass	0.35		
Carbon (hard)	Carbon	0.16	0.12 - 0.14	
Carbon	Steel	0.14	0.11 - 0.14	

Materials and Material Combinations		Static Frictional Coefficient - μ_s	
		Clean and Dry Surfaces	Lubricated and Greasy Surfaces
Chromium	Chromium	0.41	0.34
Copper-Lead alloy	Steel	0.22	
Copper	Copper	1	0.08
Copper	Cast Iron	1.05, 0.29 ¹⁾	
Copper	Mild Steel	0.53, 0.36 ¹⁾	0.18 ¹⁾
Diamond	Diamond	0.1	0.05 - 0.1
Diamond	Metal	0.1 -0.15	0.1
Glass	Glass	0.9 - 1.0, 0.4 ¹⁾	0.1 - 0.6, 0.09-0.12 ¹⁾
Glass	Metal	0.5 - 0.7	0.2 - 0.3
Glass	Nickel	0.78	0.56
Graphite	Steel	0.1	0.1
Graphite	Graphite (in vacuum)	0.5 - 0.8	
Graphite	Graphite	0.1	0.1
Hemp rope	Timber	0.5	
Horseshoe	Rubber	0.68	
Horseshoe	Concrete	0.58	
Ice	Ice	0.02 -0.09	
Ice	Wood	0.05	
Ice	Steel	0.03	
Iron	Iron	1.0	0.15 - 0.20
Lead	Cast Iron	0.43 ¹⁾	
Leather	Oak	0.61, 052 ¹	
Leather	Metal	0.4	0.2
Leather	Wood	0.3 - 0.4	
Leather	Clean Metal	0.6	
Leather fiber	Cast iron	0.31	
Leather fiber	Aluminum	0.30	
Magnesium	Magnesium	0.6	0.08
Masonry	Brick	0.6 - 0.7	
Nickel	Nickel	0.7 - 1.1, 0.53 ¹⁾	0.28, 0.12 ¹⁾
Nickel	Mild Steel	0.64 ¹⁾	0.178 ¹⁾
Nylon	Nylon	0.15 -0.25	
Oak	Oak (parallel grain)	0.62, 0.48 ¹⁾	
Oak	Oak (cross grain)	0.54, 0.32 ¹	0.072 ¹
Paper	Cast Iron	0.20	
Phosphor-bronze	Steel	0.35	
Platinum	Platinum	1.2	0.25
Plexiglas	Plexiglas	0.8	0.8
Plexiglas	Steel	0.4-0.5	0.4 - 0.5
Polystyrene	Polystyrene	0.5	0.5
Polystyrene	Steel	0.3-0.35	0.3 - 0.35
Polythene	Steel	0.2	0.2

Materials and Material Combinations		Static Frictional Coefficient - μ_s		
		Clean and Dry Surfaces	Lubricated and Greasy Surfaces	
Polystyrene	Polystyrene	0.5	0.5	
Rubber	Rubber	1.16		
Rubber	Cardboard	0.5 - 0.8		
Rubber	Dry Asphalt	0.9 (0.5 - 0.8) ¹⁾		
Rubber	Wet Asphalt	0.25 - 0.75 ¹⁾		
Rubber	Dry Concrete	0.6 - 0.85 ¹⁾		
Rubber	Wet Concrete	0.45 - 0.75 ¹⁾		
Silver	Silver	1.4	0.55	
Sapphire	Sapphire	0.2	0.2	
Silver	Silver	1.4	0.55	
Skin	Metals	0.8 - 1.0		
Steel	Steel	0.5 - 0.8	0.16	
Straw Fiber	Cast Iron	0.26		
Straw Fiber	Aluminum	0.27		
Tarred fiber	Cast Iron	0.15		
Tarred fiber	Aluminum	0.18		
Teflon	Teflon	0.04	0.04, 0.04 ¹⁾	
Teflon	Steel	0.05 - 0.2		
Tungsten Carbide	Steel	0.4-0.6	0.1 - 0.2	
Tungsten Carbide	Tungsten Carbide	0.2 - 0.25	0.12	
Tungsten Ca rbide	Copper	0.35		
Tungsten Carbide	Iron	0.8		
Tin	Cast Iron	0.32 ¹⁾		
Tire, dry	Road, dry	1		
Tire, wet	Road, wet	0.2		
Wood	Clean Wood	0.25 - 0.5		
Wood	Wet Wood	0.2		
Wood	Clean Metal	0.2 -0.6		
Wood	Wet Metals	0.2		
Wood	Stone	0.2 -0.4		
Wood	Concrete	0.62		
Wood	Brick	0.6		
Wood - waxed	Wet snow	0.14, 0.1 ¹⁾		
Wood - waxed	Dry snow	0.04 ¹⁾		
Zinc	Cast Iron	0.85, 0.21 ¹⁾		
Zinc	Zinc	0.6	0.04	

¹⁾ Kinetic or sliding frictional coefficient - holds only when there is a relative motion between the surfaces; otherwise they are somewhat higher

²⁾Note! It is commonly thought that the static coefficients of friction are higher than the dynamic or kinetic values. This is a very simplistic statement and quite misleading for brake materials. With many brake materials the dynamic coefficient of friction quoted is an "average" value when the material is subject to a range of sliding speeds, surface pressures and most importantly operating temperatures. If the static situation is considered

at the same pressure, but at ambient temperature, then the static coefficient of friction is often significantly LOWER than the average quoted dynamic value. It can be as low as 40 - 50% of the quoted dynamic value.

Kinetic versus Static Frictional Coefficients

Kinetic frictional coefficients are used with relative motion between objects. Static frictional coefficients are used for objects without relative motion. Static coefficients are somewhat higher than kinetic coefficients.

Example - Friction Force

The friction force of a *100 lb* wooden crate pushed across a concrete floor with friction coefficient of *0.62* can be calculated as:

 $F_{f} = 0.62 (100 \text{ lb}) \\ = \underline{62} (\text{lb}) \\ 1 \text{ lb} = 0.4536 \text{ kg}$

Example - Car Stopping Distance

A car with mass 2000 kg drives with speed 100 km/h on a wet road with friction coefficient 0.2.

The friction work required to stop the car is equal to the kinetic energy of the car and can be calculated as

$$\begin{split} E_{kinetic} &= 1/2 \ m \ v^2 \qquad (3) \\ &= 1/2 \ (2000 \ kg) \ ((100 \ km/h) \ (1000 \ m/km) \ / \ (3600 \ s/h))^2 \\ &= \ \overline{771605} \ J \\ \text{The friction work can be expressed as} \\ W_{friction} &= \ F_f \ d \ \ (4) \\ where \\ d &= \ stopping \ distance \ (m) \\ (4) \ can \ be \ modified \ to \\ d &= \ W_{friction} \ / \ \mu \ m \ g \\ &= \ (771605 \ J) \ / \ (0.2 \ (2000 \ kg) \ (9.81 \ m/s^2)) \\ &= \ \underline{197} \ m \end{split}$$