Skip to main content

Advertisement

Log in

Hurricane trend detection

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Because a change in the frequency (number/year) of hurricanes could be a result of climate change, we analyzed the historical record of Atlantic basin and US landfalling hurricanes, as well as US continental accumulated cyclone energy to evaluate issues related to trend detection. Hurricane and major hurricane landfall counts exhibited no significant overall trend over 167 years of available data, nor did accumulated cyclone energy over the continental USA over 119 years of available data, although shorter-term trends were evident in all three datasets. Given the χ2 distribution evinced by hurricane and major hurricane counts, we generated synthetic series to test the effect of segment length, demonstrating that shorter series were increasingly likely to exhibit spurious trends. Compared to synthetic data with the same mean, the historical all-storm data were more likely to exhibit short-term trends, providing some evidence for long-term persistence at timescales below 10 years. Because this might be due to known climate modes, we examined the relationship between the Atlantic multidecadal oscillation (AMO) and hurricane frequency in light of these short-term excursions. We found that while ratios of hurricane counts with AMO phase matched expectations, statistical tests were less clear due to noise. Over a period of 167 years, we found that an upward trend of roughly 0.7/century is sufficient to be detectable with 80% confidence over the range from 1 to 21 storms/year. Storm energy data 1900–2018 over land were also analyzed. The trend was again zero. The pattern of spurious trends for short segments was again found. Results for AMO periods were similar to count data. Atlantic basin all storms and major storms (1950–2018) did not exhibit any trend over the whole period or after 1990. Major storms 1950–1989 exhibited a significant downward trend. All-storm basin scale storms exhibited short-term trends matching those expected from a Poisson process. A new test for Poisson series was developed based on the 95% distribution of slopes for simulated data across a range of series lengths. Because short data series are inherently likely to yield spurious trends, care is needed when interpreting hurricane trend data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Download references

Acknowledgements

No outside funding was used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Loehle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loehle, C., Staehling, E. Hurricane trend detection. Nat Hazards 104, 1345–1357 (2020). https://doi.org/10.1007/s11069-020-04219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04219-x

Keywords